73 research outputs found

    Q&A: What can microfluidics do for stem-cell research?

    Get PDF

    Motifs, Control, and Stability

    Get PDF
    The interactions of networks of transcription factors and signaling molecules can be understood, in part, through concepts from control theory and engineering

    Concise Reviews: Stem Cells and Kidney Regeneration: An Update

    Get PDF
    Significant progress has been made to advance stem cell products as potential therapies for kidney diseases: various kinds of stem cells can restore renal function in preclinical models of acute and chronic kidney injury. Nonetheless this literature contains contradictory results, and for this reason, we focus this review on reasons for apparent discrepancies in the literature, because they contribute to difficulty in translating renal regenerative therapies. Differences in methodologies used to derive and culture stem cells, even those from the same source, in addition to the lack of standardized renal disease animal models (both acute and chronic), are important considerations underlying contradictory results in the literature. We propose that harmonized rigorous protocols for characterization, handling, and delivery of stem cells in vivo could significantly advance the field, and present details of some suggested approaches to foster translation in the field of renal regeneration. Our goal is to encourage coordination of methodologies (standardization) and long‐lasting collaborations to improve protocols and models to lead to reproducible, interpretable, high‐quality preclinical data. This approach will certainly increase our chance to 1 day offer stem cell therapeutic options for patients with all‐too‐common renal diseases

    Application of multivariable feedback methods to intravenous anesthetic pharmacodynamics

    Get PDF
    Continuous infusions of intravenous anesthetics are becoming increasingly popular during surgical procedures, largely because relatively precise, consistent control of anesthetic depth is possible over intravenous injection techniques. In this paper we investigate the main issues involved with the development of automatic intravenous anesthesia delivery systems in the context of robust multivariable control. We present a pharmacodynamic model that may be suitable for closed-loop control, and discuss clinical data collected from human subjects during actual surgical conditions with the anesthetic propofol

    Concise Reviews: Stem Cells and Kidney Regeneration: An Update

    Get PDF
    Significant progress has been made to advance stem cell products as potential therapies for kidney diseases: various kinds of stem cells can restore renal function in preclinical models of acute and chronic kidney injury. Nonetheless this literature contains contradictory results, and for this reason, we focus this review on reasons for apparent discrepancies in the literature, because they contribute to difficulty in translating renal regenerative therapies. Differences in methodologies used to derive and culture stem cells, even those from the same source, in addition to the lack of standardized renal disease animal models (both acute and chronic), are important considerations underlying contradictory results in the literature. We propose that harmonized rigorous protocols for characterization, handling, and delivery of stem cells in vivo could significantly advance the field, and present details of some suggested approaches to foster translation in the field of renal regeneration. Our goal is to encourage coordination of methodologies (standardization) and long‐lasting collaborations to improve protocols and models to lead to reproducible, interpretable, high‐quality preclinical data. This approach will certainly increase our chance to 1 day offer stem cell therapeutic options for patients with all‐too‐common renal diseases

    Culture in Reduced Levels of Oxygen Promotes Clonogenic Sympathoadrenal Differentiation by Isolated Neural Crest Stem Cells

    Get PDF
    Isolated neural crest stem cells (NCSCs) differentiate to autonomic neurons in response to bone morphogenetic protein 2 (BMP2) in clonal cultures, but these neurons do not express sympathoadrenal (SA) lineage markers. Whether this reflects a developmental restriction in NCSCs or simply inappropriate culture conditions was not clear. We tested the growth and differentiation potential of NCSCs at ∌5% O_2, which more closely approximates physiological oxygen levels. Eighty-three percent of p75^+P_0 ^− cells isolated from embryonic day 14.5 sciatic nerve behaved as stem cells under these conditions, suggesting that this is a nearly pure population. Furthermore, addition of BMP2 plus forskolin in decreased oxygen cultures elicited differentiation of thousands of cells expressing tyrosine hydroxylase, dopamine-ÎČ-hydroxylase, and the SA lineage marker SA-1 in nearly all colonies. Such cells also synthesized and released dopamine and norepinephrine. These data demonstrate that isolated mammalian NCSCs uniformly possess SA lineage capacity and further suggest that oxygen levels can influence cell fate. Parallel results indicating that reduced oxygen levels can also promote the survival, proliferation, and catecholaminergic differentiation of CNS stem cells (Studer et al., 2000) suggests that neural stem cells may exhibit a conserved response to reduced oxygen levels

    Robust efficiency and actuator saturation explain healthy heart rate control and variability

    Get PDF
    The correlation of healthy states with heart rate variability (HRV) using time series analyses is well documented. Whereas these studies note the accepted proximal role of autonomic nervous system balance in HRV patterns, the responsible deeper physiological, clinically relevant mechanisms have not been fully explained. Using mathematical tools from control theory, we combine mechanistic models of basic physiology with experimental exercise data from healthy human subjects to explain causal relationships among states of stress vs. health, HR control, and HRV, and more importantly, the physiologic requirements and constraints underlying these relationships. Nonlinear dynamics play an important explanatory role––most fundamentally in the actuator saturations arising from unavoidable tradeoffs in robust homeostasis and metabolic efficiency. These results are grounded in domain-specific mechanisms, tradeoffs, and constraints, but they also illustrate important, universal properties of complex systems. We show that the study of complex biological phenomena like HRV requires a framework which facilitates inclusion of diverse domain specifics (e.g., due to physiology, evolution, and measurement technology) in addition to general theories of efficiency, robustness, feedback, dynamics, and supporting mathematical tools

    Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine

    Get PDF
    Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla). Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs) to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance
    • 

    corecore